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On the fluctuations of the Casimir force: 
11. The stress-correlation function 

G Barton 
School of Mathematical and Physical Sciences. University of Sussex, Brighton BNI 9QH, 
UK 

Received 2 July 1991 

Abstract. The quantized Maxwell field in a halfspace exerts stresses on the boundary plane, 
whose zero-point fluctuations are analysed for a perfectly-conducting surface. The stress- 
correlation function on the surface is determined; its Fourier transform with respect to 
time and distance gavems the mean-square deviation of the stress averaged over finite 
areas (diameters of order 01 and over finite times of order T Conditions guaranteeing 
physically sensible results are specified on the Fourier transforms of the averaging functions, 
with a systematic expansion for aJcT<< 1, and the first few terms of an asymptotic 
approximation for o j c T  >> 1. The small-time behaviour of the surface-averaged correlation 
function appears to present a paradox, which is elucidated. Finally, a very simple expression 
is found to leading order for the mean-square fluctuating force on perfedly conducting 
large bodies of arbitrary shape. 

1. Introduction 

I .  I .  Preliminaries 

The Casimir attractive force (m2/240 L4 per unit area between infinitely extended, 
parallel, perfectly conducting mirrors a distance L apart) is governed by the vacuum 
expectation-values of the Maxwell stress tensor 

on the mirror surfacest. Neither S ( t ,  r )  nor its integrals over all or part of any surface 
commute with the Hamiltonian of the quantized field; hence their measured values 
are in principle subject to fluctuations, whose analysis was addressed in paper I (Barton 
1991). The physical motivation for the exercise was spelled out and referenced in I, 
and will not be repeated here; but we do  repeat two important disclaimers. First, we 
deal only with mean-square deviations: in general, questions about the underlying 
probability distributions remain wide open. Second, the deviations we define and 
calculate, once found, turn out to be far too small to measure directly. However, the 
aim here as in 1 is to start to develop manageable routines for dealing with zero-point 

t We use natural units h = 1 = e ,  and unrationalized Gaussian units for the Maxwell field. Fields and stresses 
will be required only on the xy plane, whence we introduce the two-component vector r = ( x , y ) ,  and its 
Fourier-conjugate k = ( k ,  , kJ. 

0305-4470/91/235533+ 19$03.50 0 1991 IOP Publishing Ltd 5533 



5534 G Barton 

effects. The particular scenario we envisage is merely the simplest open to physically 
sensible analysis: though the ideas for dealing with it would certainly need to be 
extended before one could hope to make predictions verifiable in practicet, it seems 
likely that these ideas would also remain necessary. 

Reverting then without further apology to the programme initiated in I, it remains 
the case that in I we used only the most immediate and elementary of mathematical 
methods, and our concern now is to put the calculation into more standard form, 
c ~ p ~ u n m g  LIK a p p c u p c ~ a ~ ~  S L L C ' ~ ~ - W I I C ~ ~ L ~ U I ~  I U I K L I U I I  aiiu 11s i-uurier mmsiurm. 

By making the results far more transparent and much easier to handle, this reformu- 
lation yields at least two advantages beyond the merely cosmetic (and beyond helping 
to correct numerical errors in some coefficients). First, one gains both physical and 
mathematical insight into convergence criteria, and into the asymptotics applicable 
when test bodies have characteristic linear dimensions n small or large compared with 

functions makes it plain that t o  leading order our results for flat mirrors determine the 
fluctuating forces on large objects ( a  >> T )  of arbitrary shape, through simple geometric 
projection*. 

To elucidate the basic physics, we need consider only a single flat mirror, laterally 
infinite, and only one of its faces, say the xy plane, exposed to the zero-point fluctuations 
af !he qxc t ized  Mmwe!! fie!d ir? the he!f-spice z s 0 .  Ta see why, r?a!e !hr! by 
symmetry the mean force exerted on any part of the mirror across this surface is 
cancelled identically by the mean force exerted across the opposite surface (facing in 
the negative z-direction). By contrast, the fluctuations in the two halfspaces separated 
by the mirror are uncorrelated, whence, far from cancelling, the mean-square force 
deviations across opposite faces simply add. Thus it is indeed enough to do  the 

Our physical scenario is a measurement, extending over a finite time of order T, 
of the impulse imparted to a finite-area piston set flush with the mirror, with linear 
dimensions and area of orders n and A - a2  respectively. The displacement of the 
piston during the measurement is ignored: roughly speaking, the piston is massive 
enough and T not too large. We shall see that this restricts the direct applicability of 
the results quite considerably, but it avoids over-complicating the calculations from 
the start. 

,-:.:-- .L. .___^__ :-.- ̂._^^^ ^^-^I..:-.. LI ___^. :-- --A ZL. m . ~ ~ ~ ~ ! . - I  .--. c..-~ 

. .  th- A .._" a:-- T A f  I f--ea -_ "-.._ _-_-& C ~ ~ A - A  -~ -"--.-_ .- *n-- -F ---- -I-+:-- 
L L l r  Y U l l l L l U L l  ' U. ', L U L C C  L I I ~ L I D U L C I I I C I I I .  LJLLVIIY, L~',."".""E, 111 L G i l l l l J  V L  CYIICI',LI"I, 

ca!cu!ation for only one, say only for the right-facing surface: 

1.2. Averaged sfresses and the. correlation function 

To model mathematically the mean stress measured in this scenario, we introduce, 
first, a iime aveiage (identified kji an orerbaij 

m 

S ( r ) = l _ ~ d t f ( r ) S ( t , r ) .  (1.2) 

The averaging function f ( 1 )  mimics the finite duration of the measurement. Intuitively 
we think of it as a single peak of width 2T; mathematically we take it to be real and 

t One such problem that comes to mind is how to adapt the Einstein-Langevin theory of Brownian motion 
to neutral objects at absolute zero temperature. 
i Small spheroidal objects are considered by Eberlein (1991). Such studies can yield sensible estimates Of 
the fluctuations in practicable apparatus for measuring the Casimir effect. 
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subject to the following conditions: 

. f ( t ) 3 0  
m 

d t  f ( t )  = 1 

dtf’( t )  = 0 ( 1 / T )  <CO. 

I-- 
0 

We 111 also need the Fourier transform g(l. = g * ( - U ) :  

and recall Parseval’s theorem 
m m 

du)g(v) )2=2T J-- d t  fz( t ) .  
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(1.3a) 

(1.3b) 

( 1 . 3 ~ )  

(1.5) 

Similarly we introduce a position average (identified by a tilde), designed to mimic 
the finite dimensions of the piston: . 

S ( t ) =  d’r@(r)S(t, r )  ( 1.6) 

where the real averaging function @ is thought of as a single peak, with linear dimensions 
a and area A - a’. It satisfies the conditions 

4 ( r ) a 0  (1.7a) 

J 

d 2 r @ ( r )  = 1 (1.7b) 1’ 
J d2r+’(r) = O ( l / A )  <cc 

+ ( r j =  J f m y ( k j e x p j i k . r j  d2k 

( 1 . 7 ~ )  

ji.8a) 

(1.86) 

Note the special case where @ equals 1/A over a region of area A, and zero elsewhere; 
then the expressions in (1.8b) equal (2n)’IA. Note also that on inversion (1.4) and 
(1.8a) entail I g ( u ) l e g ( O ) = I  and ly(k) lSy(O)=l .  

Purely for illustration we shall sometimes choose the Lorentzian 

but no profit derives from any similar concretization of 4 
Finally, we define the joint time- and surface-average 

s‘= d2r@(r)S(r)  1‘ 
=jj d’rdf@(r)f(f)S(t , r ) ,  

(1.10a) 

(1.10b) 
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It is s, with suitably chosen f and +, that is, in principle, measurable, and whose 
fluctuations we ultimately require. It proves central to the problem that (without a 
cutoff) the mean-square deviations of S itself, and of 3, are irrecoverably divergent. 
By cpntrast, we shall see that the mean-square deviations of the time-averaged s 
and s are well-defined provided f ( t )  is smooth enough, i.e. provided Ig(u-oo)l falls 
fast eiiough. 

Notice that we are concerned throughout, as the physics dictates, with averages of 
U ,  I.=. W l U ,  Ca"C1Ca.BCJ U1 D'1"arr;" I I C I U J ,  c"'p,karrbarry, w c  a,= l l U L  C U I I C C I I I S U  W i l l ,  Squalc" 
of averaged fields. - 

A.@= (Ol.@10)-(OIs/O)2 

- 

P : ~ ... :th -..~---~" -C "-..-- -2 Celrlr. --...hl*:--ll.. 1 --_^ "--- 1 ... :.L ~--. 

The mean-square deviation of s in the vacuum state is 

=t  / ( A A ' ~ S ~ O ) ~ ~  (1.11) 
AI' 

where IAA') denotes a two-photon statet, A and A '  being shorthand labels for the 
Maxwell normal modes  in our half-space z 2 0. Specifically$, A = (s, I, k ) ,  where s = 1,2 
is a polarization index, I is the wavenumber normal to the mirror (0 C I) and k = ( k , ,  k2) 
is the wavevector parallel to the mirror (-mik,,,<co). These limits are always 
understood even if not written. Accordingly, LA . . . = L, I d l  J d'k.. . . We also write 
w = (I2+ kZ)"*, and + for the (plane) polar angle Q f  k ;  and similarly for U', 4'. 

The canonical approach to an object like AS' is through the underlying (i.e. 
un-averaged) correlation function 

W(T, ~)=(Olt{S(t ,  I), s(t', r')}+lo)-(olslo)2 (1.12a) 

* E t - , '  p e r - #  (1.126) 

where {,)+ is the anticommutator, and where (OlS(f, .)IO) is of course independent of 
t and r. 

The two-photon matrix-elements (AA'lS(t ,  r)lO) are given in I; here we only quote 
(the corrected version of) the raw expression for W: 

W(T,p)=&Re [ d / d 2 k  [ d I ' d 2 k ' y  1 

2,. ,I J , iiiiii 

x{r2/'2cos2(+ -~ ' )+ ( r2w '2+w21 '2 )  sin2(+-+') 

+ [ - k k ' +  ww' COS(+ - +')I2} 
x exp{i(w +w')T-i(k+ k ' ) . p ) .  (1.13) 

We adopt the notation 

(1.14a) 

(1.146) 

t The factor enters because photons are indistinguishable. It  was overlooked (albeit not quite consistently) 
in I ,  which led to wrong numerical coefficients there in equations (4.3), (4.5). (4.10b), (4.12). (4.131, (5.31, 
and (5.40). The footnote an page 1000 suffered from an analytical error as well. Correct versions will emerge 
below. 
1: The normal-mode amplitudes are given in 1. 
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where AS' is the ordinary vacuum-state mean-square deviation of the time-averaged 
stress s, equation (1.2). In the special casef(f)  = s(t) (where g ( u ) =  1 )  (1.14a) reduces 
to the equal-time correlation function W(0, p ) .  Similarly 

* ( T ) =  (I d2rd2r '  + ( r ) + ( r ' )  W ( 7 , p ) .  (1.15) 

In the special case + ( r )  = s ( r )  (where y ( k )  = 1 )  this reduces to the autocorrelation 
function at given point, i.e. to W(T,  0). (There is no surface-averaged analogue to 
(1.14b), because W(T+O) diverges, as we shall see in section 4.2.) 

Finally we define the overall average of W, which is precisely the mean-square 
deviation already defined in (1 .11) :  

It is essential to remember that W ( p )  is a double average of W ( T , ~ )  with respe-ct 
to f and i', albeit with the same averaging function 1; and similarly for and I@; 
emphatically, they are not averages directly, and only, with respect to the relative 
coordinates T and/or p. 

1.3. Review 

The layout of the rest of this paper and of its main conclusions is as follows. 
Section 2 evaluates the primary expression (1.13) for W, putting it into the succinct 

and elegant form W =  Re 6/?r4[(~+i~)*-p2]' .  Its Fourier transform r (equations (2.6) 
and (2.7)) is found in appendix A, by three different arguments. The first two require 
ZoZwhzt &tpAse ifitcgrz!s products of Eesse! functioxs; passib!y they 8:: i!!--i- 
nated by the third method, which though more circuitous mathematically is easier, 
and whose physics is much more transparent, in that it determines r directly from 
familiar Green functions for the Klein-Gordon or for the wave epa t ign .  The expression 
for r leads directly to our centrepiece expression (2.8) for W = As2 in terms of the 
most general admissible averaging functions g and y. 

the conditions on g and y under which AS2 i s  well-defined. Section 3.2 considers the 
regime a / T c <  1 ,  derives the leading term AS2- 1 / T 8 ,  equation (3.2), and also the 
systematic expansion (3.4). In-section 3.2 we consider the opposite regime a/ T >> 1, 
where the leading term is AS2-1/AT6, equation (3.5), and we explain how the 
proportionality to 1/A is in effect a consequence of the central limit theorem. In this 
regime one can go only two steps beyond the leading term (as in (3.6)) without 
disproportionately heavy atalysis. 

Section 4 reverts from W to the partially-averaged correlation functions. We give 
convenient integral representations for W ( p )  and * ( T )  in terms, respectively, of the 
Fouriertransforms g ( u )  and y ( k )  of the averaging functions. It turns out that e(,+ 0) 
is proportional to  AT^, which seems paradoxical b e c p s e  @ ( T )  when further 
averaged over time must reproduce the positive-definite W = A s 2 .  The last part of 
section 4.2 resolves the paradox, and spells out the physics of this minus sign. 

For the regime a >> T, section 5.1 generalizes the leading term of the mean-square 
force on a piston to large bodies of arbitrary shape, governed by (5.2). The underlying 
assumptions are elucidated in section 5.2 in terms of the stress-correlation function 
appropriate on the surface of such a body. 

- 
Section ?;I uses w to establish snme h g i c  propeerties of AP~ Sectinn 3.1 diSQ!SS.S 
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As already mentioned, appendix A derives the Fourier transform of W. Appegdix 
B considers whether the uncertainty relation applied to the test piston allows AS2 to 
be measured at least in principle, if as we have done one requires also that the 
displacement of the piston during the measurement be negligible. (Without this restric- 
tion the calculations, though basically no different, would become much more compli- 
cated.) The answer turns out to be n o  when a << T, and yes when a >> T. 

2. The stress-correlation function and its Fourier transform 

In order to evaluate W(T,p), equation (1.13), we set 1 2 = 0 2 - k 2 ,  / ' 2 = ~ ' 2 - k ' 2 ,  and 
then employ the following trick. First we replace exp{i(o+o')T-i(k+k')p}, tem- 
porarilyt, by e x p { i ( w . r + w ' ~ ' ) - i ( k . p + k ' . p ' ) } .  Next, we replace o by -iJ/JT and k 
by iV = i(J/ap,, J/Jp,); similarly o' and k' are replaced by -iJ/JT' and iV' respectively. 
Finally of course we shall set T = T' and p = p'. 

Some manipulation yields 

(2.1) 
1 

W ( ~ , f ) = g R e  Q ~ ( ~ , P ) ~ e ( ~ ' , f ' ) ( , = , , , p = p ~  

where 

and 

(2.3) 

(2.4) 

The convergence factor exp(-eo) in (2.3) is supplied for convenience; the limit E + O +  
is to be taken at the end of the calculation, when it yields mathematically sensible 
answers to physically sensible questions. 

The differentiations prescribed by Q are simple though tedious. The end-result reads 

1 
Z ( ~ , p ) = [ " ~ d l  d2k-exp(ioT-ik.p)exp(-Eo) w 

1 
Z(T,p)=-2?T 

(T+ie)2-p2' 

6 1 
71 [ ( r + i ~ ) ~ - p ~ ] ~  

W=,Re 

The Fourier transform r of W is defined by 

1 Note that the distinction between (7 ,  p )  and (T', p ' )  has nothing to do with the difference between the 
arguments ( 1 . 1 )  and (l',r') in (1.12). 
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Appendix A inverts this (in the sense of generalized functions (Lighthill 1958)) to yieldt 

(2.7) 

where 8 is the Heaviside step-function. 
We emphasize that the apparent symmetry in (2.5) as between T and p is wholly 

deceptive; ( 2 . 7 )  is ample evidence that the dependence on T and the dependence on 

Finally, to evaluate the overall average @ we simply express W in (1.16) by (2.6), 
(2.7), and the.Ps and 9's  likewise as Fourier integrals, by (1.4) and (1.8). Then we 
change to barycentric and relative variables, i.e. to ( I  + t')/2 = ,y and ( f  - t ' )  = T, and 
similarly to ( r  + r')/2 = U and ( r  - r ' )  = p. Integration nver the barycentric coordinates 
introduces factors 2rS(v+  U ' )  and ( Z r ) ' S ( k + k ' ) ,  and leads tn 

ais *,feierri, a ;i;;ereiice that wiii pro-ve basic io our anaiysis, 

which is the central result of this paper. 

3. The mean-square averaged stress 

3.1. Convergence 

The necessary and sufficient condition for W to be well-defined, i.e. for (2.8) tn 
converge, reads 

("6, lg(,)]2,5<a, (Ti)  

Recall that the behaviour of g ( u + m )  is governed by the singularities off ( I )  at finite 
1. Singularities on the real axis are discussed, for example, by Lighthill (1958). I f f  has 
no singularities for IIm f l <  7, then g(v+oo)sexp(-7u).  

To understand (3.1), notet that for fixed Y in (2.8) the inner integral d2k converges 

the behaviour of the integrand at arbitrarily large U .  Since the convergence of f  dZkly12 
is already posited in (1.86), we can, for large U in (2.8), replace (U' - k')'/' + us .  The 
resultant inner integral is just Y' d2kly12, which validates the criterion (3.1). 

Notice especially that this condition on g, i.e. on the time-averaging, cannnt he 
relaxed through any further conditions imposed on y, i.e. on the surface-averaging. 
Conversely, no convergence conditions are required on y beyond those already adopted 
in (1.7) and (1.8). This is perhaps the most telling illustration of our earlier remark 
that the apparent symmetry between T and p in W, equation (2.5), is deceptive. 

3.2. Short distance, long rime 

In almost any realistically conceivable apparatus one would have a << T, i.e. piston 
diameters a much smaller than the distance cT that light travels during the measure. 
ment. Then 9 is a much narrower peak than f ;  conversely y is much flatter than g, 

t r(n, K )  must not of course be confused with gamma functions. 
i: We are talking our way through Fubini's and Tonelli's theorems (see, e.g., Weir 1973). 

- 

J 

+ A . r ; ~ l l v  h m r o . . r -  G.- ... hn-rn - - I . ,  r h n  c ~ - . I ~ - . ~ P - - P  n C  ("A.. :" :- n..--+:-- 
L..,. a.., YI*YU.,I *.I, I l r l lCL ""1J LLLC b" , . *LL~ ' . 'CC "1 , ' 

U" 12 L.1 q1uc"L1"1L, 1 . 6  0ii:y 
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and to leading order in a /  T we can approximate in (2.8) by setting Iy(k)l= y (0 )  = 1, 
because lgI2 becomes negligible before ly(k)12 can change appreciably from Iy(0)12. 
Formally, this limit corresponds to +( r )  = S( r ) ,  whence it reduces W = AF to W(0) = 

AS2, as one can see from (1.10) and (1.14). Since l y I2=  1 reduces the inner integral in 
(2.8) to 2 n u 7 / 7 ,  we findt 

. 
lim W =  lim dvjg(v)12v7 =0(1/T8) 

= / 7 - 0  

where the final estimate follows dimensiogally. With the Lorentzian (1.9) for instance, 
i.e. with (g12=exp(-2vT), one obtains AF= 3/(2” n4, T8) .  

Notice that (3.2) is just what one would have got by tackling directly the time- 
averaged stress at a given point, i.e. without any surface-averaging in the first place. 
The reason, pointed out in I, is that averages over times of order Ta re  dominated by 
normal modes with frequencies w 5 1/ T, i.e. with wavelengths AB T; but these are 
effectively coherent over distances up to order T, so that surface averaging over shorter 
distances make no difference. 

Of course (3.2) is merely the first term of the systematic expansion appropriate 
when a /T<< 1, found by writing 

(3.3) I 1 lo2% d + / y ( k ) l 2 = 2 ~ (  P O + I * I ( ~ ) + I * ~ - ( ~ ~ ) ~ + .  2! . . 

where q4 is the (plane) polar angle of k and the pfi are dimensionless coefficients, with 
F~ = 1. On substituting into (2.8) and integrating over k we obtain 

which is effectively an expansion in powers of a /  T, provided g( v+m) falls faster than 
any inverse power. For instance, Lorentzian averaging yields 

whose appearance suggests that such series probably have finite radii of convergence. 

3.3. Long distance, short time 

In the other extreme LI >> T, y is much narrower than g. Then in (2.8) we can to leading 
order approximate by setting ( v 2 -  k2)’12+ Y’, because IyI2 is already negligible before 
k becomes comparable with v. Thus the inner integral becomes v s  I d’k IyI2,  and appeal 
to Parseval’s theorem (1.86) yields$ 

= O(1/AT6) (3.5) 

where the estimate ag4n follows dimensionally. With Lorentzian time-averaging for 
instance, (3.5) gives AS2=(I/2’n3T6) d2r+2. 

t If (3.2) dizerges one must revelf to (2.8). But i t  is hard to imagine any plausible lime-averaging function 
for which 1 dvlgl*u5 converges while I dvlgl‘v’ does not. 
%me coefficient here corrects the footnote on p 1000 of 1. 
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Systematic approximation is harder to come by than for a<< T. and we settle for .. 
just two terms beyond ( 3 . 9 ,  obtainable from (2.8) through the binomial expansion of 
(u2-k2)5/2: 

Provided the k-integrals continue to converge we can approximate (3.6) by ignoring 
the cutoff O ( u -  k); then it is clear dimensionally that the terms k 2 / u Z  and k4/u4 
generate factors T 2 / a 2  and Tala4  respectively. This simplistic approach can go no 
further, because I, du  1gI2/u diverges at its lower limit; on the other hand, more precise 
asymptotics would become far too elaborate. 

The proportionality to I j A j n  (3.5) stems directly from the central limit theorem. 
One can see this if oneyiews s as in ( L l O a ) ,  i.e. if one starts with the time-average 
S ( r )  and then regards as the surface-average of S ( r )  over a large piston of area of 
order A -  a’. Roughly speaking, when a >> T the argument in the paragraph below 
(3.2) allows us to think of the piston as subdivided into very many patches, eacb with 
diameter of the order of the coherence length T of $. The contributions to s from 
different patches have effectively random relative phase>, and the number of patches 
is of order A/ T2. Then by the central limit theorem AF is inversely proportional to 
this number, i.e. is proportional to 1/A. 

To justify this reasoning in more detail, we refer forward to section 4.1, which 
supplies the time-averaged correlation function, and to section 5.2, which explicates 
the underlying integrals. In anticipation, we record the mean-square force AF2 stem- 
ming from (3.5) in the special case where 4 ( r )  equals 1/A over a region of area A, 
and vanishes elsewhere. Then AF2= (AAS)’ simply from the definition of mean stress, 
while d 2 r $ 2 =  1/A. Consequently 

(3.7a) 

where a’ is dimensionless, and a 2 / T 6  merely a convenient shorthand for the propor- 
tionality constant, defined by 

: 

AF’ = ( a2/ T6)A 

(3 .76)  

Finally, to the extent that the approximations (3.5) and (3.7) are adequate, the fact 
that they derive from the central-limit theorem automatically establishes that the 
underlying probability distributions are Gaussians. Unfortunately, no such simplicity 
obtains in other regimes. 

4. The partially-averaged correlation functions 

4.1. The time-averaged correlation function W ( p )  

This function, defined in (1.14), generalizes the equal-time correlation function 
W(0, p )  = 6 / r 4 p 8 ,  to which it reduces in the special case f ( t ) =  s ( r ) .  

One can get a fair preliminary idea about W ( p )  by evaluating it in the special case 
of the Lorentzian (1.9). Contour integrations with respect to t’ and to t yield 

1 
(Lorentzian). 

6 w(f)=T ( 4 ~ 2 + ~ 2 ) 4  (4.1) 
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In the general case we tackle (1.4) by substituting fo r f ( t )  and f ( t ’ )  from (1.4), 
and by setting 

W(T, p )  = (l/n*) Re(J/Jp2))’[(T+iE)2- p’1-I. 

Again we change to barycentric and relative variables, and find 

1 
x exp{-i( u + u ’ ) ~  - iT(  u - u ’ ) / 2 }  - 7 Re (4.2) :4(Jz (T+iE)’-p’ 

where the correct placing of the instruction Re is important: it must not be taken 
outside the integral. Next, I dx  yields a factor 2 d ( v  + U’), and we explicate the requisite 
real part as in (2.5). We can also set du = 2 du; this leads to - 

(4.36) 

Recognizing the sphericai Bessei iunction sinizjjz = j o ( z ) ,  and recalling (a/az’i:jo(zj = 
- j 3 ( ~ ) / ( 2 ~ ) 3 ,  we obtain 

(4.3c) 

(4.36) 

(4.3e) 

It is easy to check that (4.36) reduces as it should to (4.1) when Ig12=exp(-2uT), and 
that ( 4 . 3 ~ )  reduces to (3.2) as p+O, in the sense that /g(u)l’ is already small before 
up becomes comparable with 1. 

In the regime p + m  (matching the approximation f ( t ) =  8(t)j  it is clear directly 
from the definition (1.14a) that 

(4.4) 

By contrast, it is not so obvious how to recover this conclusion directlyt from (4.3~-e).  
We argue that in this limit Ig(x/p)l’in (4.3e) functions merely as a convergence factor, 
allowing one to evaluate the integral by continuation in the indices m, n from the 
convergent case, 

w ( p  + W) = 6 / n 4 p s .  

I‘((n + m f  1)/2) 
r ( ( n  - m +  1)/2) 

(om dxx”J.(x) = 2” (4.5) 

(Abramowitz and Stegun (1965), (11.4.16)). On setting m = n = $  we do indeed 
recover (4.4). 

t For instance, one gets nowhere with the attempt to use the large-argument asymptotic form of j,(vpP) in 
(4.3c). 
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4.2. The surface-averaged correlation function @(T) 

One standard way of exploring Casimir fluctuations, at least in principle, would be to 
study the autocorrelation function (in time) of the force experienced by a finite piston; 
or in other words to study the surface-averaged correlation function defined in (1.14). 

We start with the more realistic case where R << T. Then (2.5) makes it clear, directly 
in configuration space, that 

(4.6) 

an evident counterpart of (4.4). 
The other extreme T<< R produces some surprises; it is interesting if only because 

it illustrates some subtleties concerning W (  T, p )  that are not immediately apparent 
from (2.5) on mere inspection. 

We start by deriving for @ ( T )  an integral representation analogous to (4.3) for 
W ( p ) .  Substituting into (1.15) the Fourier representations ( 1 . 8 ~ )  of the 4’s and (2.6), 
(2.7) of W, we are led to 

- w( T +  CO) = 6/1r47’ 

1 
@( 7 )  = d2Kly(K)I22 Re jm dCi(Ci2 - K2)’I2 exp[-iCL(~ -i&)] (4.70) 

(27r)’60a2 K 

d2Kl y(K)12K’ Y3( T K )  = ~ d2K Iy( K / T ) I ’ K ’  Y,( K ) (4.7b) 

where Y3 is a Bessel function of the second kind. So far, (4.7) is exact. 
The limit 7’00, equation (4.6), emerges from (4.7b) if one argues as we did about 

w ( p )  at the end of section 4.1 above. Mathematically more straightforward but 
physically more startling is the other extreme T / R + O ,  where I Y ( K / T ) ~ *  falls very fast 
with increasing K .  Hence we replace K ’ Y ~ ( K )  by l im,+ , ,~’Y~(~)=-16/ r ,  noting the 
negative sign. One finds 

=-Re d2r$’ 
a ’ ( ~ + i a ) ~  (4.8) 

In the last step have used Parseval’s theorem (1.86). We have also reverted to the 
explicit form ( ~ f i ~ ) .  

The negative sign in (4.8) might seem paradoxical, because we know that the 
average of @ ( T )  over f ( 1 )  and fA t ’ )  (subject here to a<< T )  must be positive, being 
just the mean-square deviation AS‘. Specifically, this average must yield (3.5). In fact 
the formalism warns one to be careful, since the limits 7’0 and E + O  are manifestly 
incompatible. For fixed finite T however small, E + 0 in (4.8) yields negative @( T ) ,  

indicating strong anticorrelation between values of the stress at closely neighbouring 
times, even after surface averaging. (This is just another reminder of the violence of 
zero point fluctuations generally, which it is the object of the present paper, as it was 
of I ,  to render amenable to rational analysis.) By contrast, if one tried to consider 
directly the mean-square local stress at a given time, then one would need to take the 
limit T + O  first and E + O  only afterwards, i.e. strictly ‘at the end of the calculation’, 
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according to the letter of the law. This limit, however, is both mathematically and 
physically ill-defined: at a given point it diverges like 1/E8, and even surface-averaging 
softens it only from l / e8  to I / E ~ .  

To resolve the apparent paradox, i.e. to show that the formalism is self-consistent, 
one must verify that the appropriate average of R e [ l / ( ~ + i & ) ~ ]  is negative. To this end 
we write 

1 
( t -  t '+ia)6 

- 
1/T6-Re1/(T+iE)6- d td t ' f ( t ) f ( t ' )  Re (4.9a) 

1 
x e x p { - i ( u + v ' ) , y - i ~ ( u - u ' ) / 2 )  Re- 

(T+iE)6 

Again, the correct placing of the instruction Re is important. Contour integration yields 

1 
=-- 5 !  ~ o m d u ~ g ( u ) ~ z u s  (4.10) 

with the requisite minus sign. Substitution into (4.8) then reproduces (3.5) as it must. 
Loosely speaking one might p e r h a p s h c r i b e  what has happened by saying that 

the negative contribution to the average l / T 6  from the singularity itself (i.e. from the 
region T <  E)  outweighs the positive contributions from T >  E. 

5. Mean-square forces on large bodies or arbitrary shape 

5.1. Plausibility argument and end-result 

Consider the finite-time-averaged force F. = P .  U in the direction of the unit vector U, 
exerted on part or all of the surface of a perfectly-conducting body, by the zero-point 
fluctuations in the surrounding vacuum. For an isolated body as a whole (OIFulO) 
vanishes by translation invariance; but the mean-square deviation AF: = 
(0lF~IO)-(OIFu10)* does not vanish, and its value depends on U except in the very 
special case of the force on the entire surface of a sphere. 

We are interested in AF: for a (generally curved) surface region A; we shall use 
the same symbol A also for the actual area of the region, and the symbol a generically 
for any linear dimensions characterizing A. Thus A-a2, and we restrict ourselves to 
surfaces with principal radii of curvature of order not less than a Simple examples 
are (all or parts of) ellipsoids of moderate eccentricity. We can include objects like a 
solid half-sphere, on the mathematical assumption that the leading term of AF: is 
wholly accounted for by the appropriate surface integrals, with no special contribution 
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t o  this order from sharp rimst whose opening angles are finite. As before, large and 
small a will mean a >> T and a<< T respectively. 

Since the tangential stresses vanish, we retain S(r) to denote the time-averaged 
normal stress at a point r on the surface. Writing a typical vector surface-element as 
dA = dA n, with n the unit outward normal, we have 

Fu=- dAS(r)(n.u) .  (5.1) J A 

When a s  T, the calculation of AFi even with simple shapes is quite demanding; 
for small spheroids and for spheres of any size it is considered by Eberlein (1991). 
But for large bodies, AF: follows almost at once if we assume that, locally and to 
leading order, the zero-point fluctuations on such surfaces are the same as they would 
be on an infinite conducting plane coincident with the local tangent plane. Then the 

A can be 
subdivided into very many elements dA<< A, which are however still large enough 
individually to contribute to AFi proportionately to dA; the proportionality constants 
are essentially the same as  for a truly flat surface, i.e. the same as in (3.7), but weighted 
now with the purely geometric factor (n .u) ' .  This factor allows for the gradually 
varying inclination of the local tangent plane to the direction U of the requisite force 

Section 5.2 will describejust what these assumptions mean in terms ofthe correlation 
function. If they are accepted, then they yield the end-result immediately, and in the 
very simple form 

&scussion in scciio" 3.3 makes it piauspoie ihai ~ large surface 

- --- ^- ^_. 
UJ,,qJ"L,C,,L. 

AFi = (a ' /T6)  dA(n.u)*. (5.2) J, 
For a sphere of radius R >> T, and writing R for solid angle, we get 

(5.3) 

For the curved surface of a hemisphere, with U along the polar axis, it is clear from 
symmetry that (5 .2)  yields just half (5.3), ie. just (2wa ' /3 ) (R ' /T6) ) .  These results may 
be compared with the contribution ( 7 r a 2 ) ( R 2 / T 6 )  from the flat surface of the hemi- 
sphere, and with the consequent total for the half-sphere, which reads a 2 ( x + 2 n / 3 )  x 
( R 2 / T 6 ) =  (5na2/3)(R'/  T6) .  It is amusing to observe that in fact AF: for the curved 
surface is independent of the angle between U and the polar axis, i.e. that it equals 
( 2 n a 2 / 3 ) ( R ' / T 6 )  for all U. 

5.2. Derivation from the correlation function 

Just what our assumptions really posit is perhaps best appreciated by explicating them 
in terms ofthe appropriate correlation function. This is defined by writing the expression 
on the right-hand side of ( 1 . 1 2 ~ ~ )  as W ( T ;  r, r'), since it now depends on r and r' 
separately, and not only on their difference. Accordingiy, its time average is written 

t Thr problem of determining such special contributions reminds one of the classic asymptotic analyses of 
the Casimir stresses (i.e. of the (OlPJO) rather than of the Apt): see. e.g., Balles and Hilf (1976). and Balian 
and Duplantier (1978). 
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W(r,  r’). (We do not go into details about how precisely to coordinatize the surface.) 
We choose barycentric and relative coordinates as in section 2, and have W =  
W ( u + p / Z ,  u - p / 2 ) .  Define a function H(r) ,  equal to 1 on the region A, and 0 
elsewhere. Then, in an obvious notation, 

AF:=[ I d2rd2r’  W(r,r’)(;.u)(;‘.u) 
A A  

= J j  d 2 u d 2 p H ( u + p / 2 ) H ( u - p / 2 )  

x W ( a + p / 2 ,  a - p / 2 ) ( S & . u ) ( Q . 2 . u )  

(5.4a) 

(5.46) 

where hats identify unit vectors. 
We are now in a position to spell out, in turn, the three assumptions (or approxima- 

tions) we need, and their consequences. (a )  Assume on geometrical grounds that W 
reduces to the form appropriate on the infinite flat boundary surface of a halfspace, 
as given in section 4.1. Then 

W ( u + p / 2 , a - p / 2 ) =  W(p) 

where W ( p )  is given by (4.3), and for Lorentzians by (4.1). This is plausible if the 
radii of curvature much exceed the correlation length T of W. ( b )  Approximate the 
product of the two H-functions by H 2 ( a )  = H(u), and extend the integration over 
all values of p. This is justified if the region is much wider than T, equation (3.5) 
validating the consequences explicitly. Thus 

(c) Replace both scalar products by n(a).u, with n ( a )  the unit normal at U. This is 
justified (subject to ( b ) )  if the radii of curvature are large and vary little over distances 
of order T, i.e. within the range of W. 

Under ( a ) ,  ( b ) ,  ( c )  jointly, (5.4) reduces to 

d2u(n.u)’)( d2p W ( p ) )  

where the second factor is a constant identified as a‘/ T6 by comparison with (3.7) for 
a flat surface. It is thus that we finally recover (5.2). 

It may be worth stressing that higher-order corrections are now incomparably 
harder to identify than in section 3.3, because they now depend on the radii of curvature 
as well as on the size of the region A. 
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Appendix A. The Fourier transform of W 

We aim to establish (2.7) by inverting (2.6): 

(A.la) 
6 / r 4  

[ ( T +  ia)’ -p214 Re 

Because the result is so crucial and the asymmetry between Cl and K perhaps surprising, 
we give three different derivations, two based on somewhat recondite lore about Bessel 
functions, and the third on familiar properties of relativistic Green’s functions. 

A.1. Bessel functions and brute force 

Starting as in section 4.1, we write 

Integration over the (plane) polar angle of p introduces a second Bessel function: 

The integral dpp’J,(Kp)J.(np), discontinuous at 0 = K ,  is discussed at length 
by Watson (1944). Equation (A.2) features a very special case, where I = m - n + 1. 
Then the integral vanishes if R2<K2, and one has (Abramowitz and Stegun (1965), 
equations (11.4.33), (11.4.34), (11.4.4)) 

Substitution into (A.3) yields (A.16) as promised. 

A.Z. Bessel functions and Parseual’s theorem 

The step function in (A.4) is surprising; its presence is explained, and the integral 
evaluated, by a beautifully direct argument given by Titchmarsh (1948). One need 
merely establish (for positive K and 0) the two (symmetrically normed) Fourier sine 
transforms 
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they are the inverses of relations found by exploiting the power-series definition of 
the Bessel functions. 

Parseval's theorem then yields 

lom ~ P I J o ( K P ) K P - ~ " J , / ~ ( ~ ~ ) ~  

on evaluating this elementary integral we reproduce (A.4). 

A.3. Relativistic method 

In order to relate r to relativistic Green functions, we introduce and then integrate 
outt a third space-coordinate z, by acting on the right of (A.la) with the identity 

We adopt the obvious four-vector notation 

x' - (xo, x) L = ( b , k ) - ( n , K , , K , , K , )  
- +  x'. .%e x o b  --x. k k. k =  k i -  kZ 

(xo * ie)2 -x2 = 2.2 * iex,. 

Then (A.la) becomes 

(A.9) 

(A.10) 

where, by inspection, A is a Lorentz scalar, depending on L.c alone (and not also on 
the sign of ko). We introduce one further auxiliary Lorentz-scalar variable A', which 
allows us to write 

] (A. l l )  
1 + A = ~ l u n ( L ) 3 ~  1 .  d4xexp(-iL.x')l( 

T A-o 2 x'..?+iexo-A2 x'.x'-i&xo-A2 ' 

The essential step is to observe what happens if the roles of the variables L and x' 
are interchanged, i.e. if one thinks of i as a position and of x' as a momentum variable. 
Then the integral in (A. l l )  becomes instantly recognizable, and we see that 

A = -16 lim 7 -{D'"(C) + Drd'(i)) 
*-0 (J: )3i 

t Basically this reverses Hadamard's 'method of descent', discussed in a related context, where it is called, 
mare descriptively, 'the method of embedding' (Barton (1989). section 11.2.3). 
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featuring the familiar retarded and advanced Green’s functions for the Klein-Gordon 
equation 

in a Minkowski space with coordinates 
(Schwinger 1947; or see, for instance, Bogoliuhov and Shirkov 1959) one finds 

Using the standard expression for the D’s 

Under limA-o @/ah2)’, the only term that survives is the third term o f  the expansion 

which yields 

Substitution into (A.9) and integration over K ,  then reproduce (A.lb). 
Instead of exploiting Schwinger’s expression quoted in (A.12), one can derive 

(A.13) by evaluting (A.lO) in conveniently chosen reference framest, taking advantage 
of the fact that it depends only on &<. For spacelike 6L<O,  i.e. for K’>n’ ,  one 
chooses the (‘primed‘) frame where kh=O and L.L= -k’2. Then A becomes 

2 = o  1 3 m  1 
(xo+i&)2-x 

-p d3x eik”x($) I-, dx, Re 

vanishing because Jdx,  vanishes. For timelike L.L>O, i.e. for n 2 > K 2 ,  one chooses 
the (‘double-primed’) frame where k”=O and c.c=ki2.  Integration over xo and 
manipulation along the lines of section 4.1 then lead to 

(A.14) 

which becomes applicable in arbitrary frames on restoring kg* = C. L=n’- K 2 .  
The remaining integral (a pure number) is given by (4 .3,  and we recover (A.13). 

Appendix B. Constraints from the uncertainty relation for the piston 

Section 1.1 has already emphasized the severe practical limitations of the theoretical 
exercises in this paper and in I; here we consider whether any further limitations follow 
from the Heisenherg uncertainty relation for the piston or other test body (of mass 
m). It proves convenient to reserve, as hitherto, the symbol A for deviations due to 

t This  type of reasoning is spelled out elsewhere as a simple way to the propagators of the wave equatiun 
(Barton 1989, Appendix 0). 
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the zero-point fluctuations of the Maxwell field; and to introduce the symbol 6 for the 
familiar uncertainties of the piston position z and its conjugate momentum p ,  obeying 
the uncertainty relation Sz. Sp 3 h / 2  as a consequence of the commutation rule [z, p ]  = 
ih, irrespective of any coupling between the piston and the fieldt. 

We ask whether the 8-uncertainties allow the A-deviations to be observed in 
principle, subject to the subsidiary condition that the displacement of the piston during 
the measurement be negligible. We repeat from the end of section 1 that without this 
condiiion ihe caicuiaiions wouid proceed on basicaiiy ihe same iines bui wouid need 
to become much more elaborate. 

The mean-square impulse acquired by the piston from the field is 

A p 2 - a 4 A 9 T 2 .  (B.1) 

Obviously, Ap is directly measurable only if Sp C Ap, and our problem is to ensure 
this (which automaticaiiy sets a iower bound on b z a  i t j8pj  whiie ensuring ais0 that 
both the initial 6zi and the final 62, are less than the coherence length cT, since otherwise 
it would have been wrong to ignore the displacement of the piston in calculating Ap2.  
(For dimensional reasons the correlation length must be of order cT perpendicularly 
as well as parallel to the mirror.) It would be absurd of course to envisage position 
uncertainties as large in practice as any likely value of cT: the point is rather that this 
pariicuiar argumeni can afiord io vperaie wiih very iiiverai bounds on ihe at. 

Accordingly, with S p i 3  hlSz, ,  and taking account of distance travelled in time T 
at speed p l m ,  one estimates 

S z , 3 S z i i T S p , l m 3  Szi thT/mSzi .  03.2) 

However, since we can accept Szi of order cT, equation (8 .2)  reduces to the very mild 
requirement &,? (&t i t jmcj ,  where hjmc  is ihe Compion waveiengih forihe pision, 
wholly negligible with respect to any conceivable value of cT. Thus we can afford to 
base further estimates on 

62,- 62; - 6z = cT (B.3) 

whence 

Sp, - spi - Sp 3 h /  Sz = h/cT.  (B.4) 

The conclusions now follow immediately. In the regime a / c T < <  1, equations (B.l)  
and (3.2) entail 

then Ap > Sp requires 

a 2 h l c 3 T 3 >  h j c T = + ( a / c T ) 2 >  1 

which in this regime is false by definition. 
By contrast, in the regime a / c T  >> 1, equations (B.1) and (3.5) entia1 

t In this appendix we restore h and c. 
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whence A, > Sp  now reads 

a h l c 2 T 2 >  h l c T = S a l c T >  1 

which is perfectly consistent. 
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